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Trapped-ion entangling gates robust against qubit frequency errors
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Entangling operations are a necessary tool for large-scale quantum information processing, but experimental

imperfections can prevent current schemes from reaching sufficient fidelities as the number of qubits is increased.

Here it is shown numerically how multitoned generalizations of standard trapped-ion entangling gates can

simultaneously be made robust against noise and mis-sets of the frequencies of the individual qubits. This relaxes

the degree of homogeneity required in the trapping field, making physically larger systems more practical.
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I. INTRODUCTION

A major goal in quantum information processing is to

reach the level of a fast, highly scalable universal quantum

computer. A device at this level is proven to have compu-

tational capabilities for certain classes of problems which

exceed any possible classical computer [1,2] and would have

major applications in a broad range of fields spanning all

the physical and computational sciences [3–5], making an

inherently quantum world accessible to simulation and inves-

tigation. Several physical technologies are being developed

in parallel in search of this target [6–8], of which trapped

ions are commonly recognized as one of the two leading

platforms, along with superconducting qubits [9,10]. To reach

universality for a constant number of qubits, only a small

set of operations is absolutely required: a small number of

single-qubit operations, and a single two-qubit entangling

operation.

Throughout their development, quantum gate implemen-

tations have always contended with noise reduction, with

varying estimates placing the maximum allowable probability

of failure per gate at between 10−2 and 10−4 [11]. Single-qubit

gates have been achieved in ion traps at fidelities over 99% for

over a decade [12], with more recent works taking the average

gate infidelity to 10−6 [13]. The current state-of-the-art fideli-

ties for two-qubit gates are performed in ion traps, achieving

infidelities of less than 10−3 with laser-induced gates [14,15]

and 3 × 10−3 with microwave-controlled schemes [16], re-

quiring very low tolerances in homogeneity and stability of

control and trapping fields, with scalability remaining a large

problem. Proposals to enlarge ion-trap computers typically

focus on producing modular systems, either on physically

shuttling ions [17] or introducing probabilistic photonic inter-

connects between separated traps [18]. Both of these methods

exacerbate existing sources of noise by increasing either the
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physical distance or the number of external supplies and bulk

optics that field coherence must be maintained across. It is still

imperative that entangling operations can be achieved that are

robust against degraded conditions and controls.

These two primary qubit technologies in ion traps typically

suffer from differing dominant degradation effects, though

their methods of action are similar. In both the optical and

microwave regimes, the qubits are separated by too great

distances due to their Coulomb repulsion to interact directly,

but this same force can be used to engineer an interaction

using the shared motion as a temporary bus mode [19]. The

reliance on the motion creates another potential source of infi-

delity, alongside the necessity of keeping the qubit frequencies

entirely coherent with each other and the driving fields. In

ion-trap gates, these noise sources are typically macroscopic

components; laboratory temperature and electrode voltage

drifts decohere the motional mode, while long-term laser-

and microwave-field frequency and amplitude fluctuations

primarily affect qubit frequency splittings.

For ion-trap qubits, there has been significant interest in

making gates resilient against unwanted heating and fre-

quency errors of the bus mode using multitoned driving fields

[20,21] or by amplitude or phase modulation [22,23]. Early

microwave-controlled gates necessitated dynamical decou-

pling methods to protect against overall fluctuations in the

magnetic field [16,24], with more recent proposals for hyper-

fine qubits considering gate speedups by inserting coupling to

more motional modes [25], or experimental simplifications by

decoupling from global qubit frequency mis-sets and oscilla-

tions without additional fields [26].

The scheme illustrated here extends the previous litera-

ture by using a multitone extension to the Mølmer-Sørensen

scheme to produce a gate resilient against all frequency errors

on one or both of the qubits individually. These sources of

error have previously not found as wide interest as those

in the motional frequency in existing literature outside of

microwave-controlled qubits, although the physical scaling

of apparatus will only exacerbate driving amplitude and fre-

quency drift considerations for all technologies [10]. This

scheme is applicable to all ion-trap qubit encodings, including

magnetic-field-sensitive optical qubits, and produces an im-

provement in infidelity around the current threshold of error
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correction of over two orders of magnitude, without being

specifically generated for any particular offset magnitude.

The same numerical optimization methods can be applied

to produce a driving scheme that minimizes the average

infidelity for any error model, as the errors are considered

nonperturbatively. It may also be implemented simply in

experiments, requiring no fields to be added; an arbitrary

waveform generator is the sole necessity over the original

Mølmer-Sørensen implementation [27].

II. MODEL

A. System

The system Hamiltonian for two harmonically trapped ions

considering only a single motional mode is

ĤS/h̄ = 1

2

(

ω̄(1)
eg σ̂ (1)

z + ω̄(2)
eg σ̂ (2)

z

)

+ ω̄mâ†â, (1)

where ω̄(n)
eg is the qubit frequency separation of the nth ion

and ω̄m is the frequency of a phonon of motion that has

â and â† as annihilation and creation operators. For ideal

gate operation, the two separate qubit frequencies should

be equal and all frequencies should be exactly known. In

reality, however, several noise sources conspire to modify

these values over the course of a complete experiment, and

the true frequency ω̄ is formed of a known component ω with

the addition of some deviation δ as ω̄ = ω + δ. Modifications

to the motional frequency δm occur primarily due to endcap

voltage drifts, causing apparent dephasing effects when av-

eraged over several gate realizations. The dominant sources

of error on the nth qubit frequency δ(n)
eg depend strongly on

the encoding of the qubits; magnetic-field-sensitive qubits will

generally suffer most from local variations in the field, while

the frequency separation of optical qubits is more commonly

mis-set due to slow drift of the spectroscopy laser. The errors

on the two qubit frequencies can be parametrized as individual

differences from the estimated frequency, as in Eq. (1), but

it is more convenient for the analysis to consider an error in

the estimation of the average frequency δavg = (δ(1)
eg + δ(2)

eg )/2

and the distance of each individual value from this average

δspl = (δ(1)
eg − δ(2)

eg )/2. These frequencies are diagramed in the

context of the energy-level scheme in Fig. 1 for the standard

Mølmer-Sørensen gate detuned from the sidebands by an

amount ǫ.

Moving to a rotating frame defined by Û = exp(iĤSt/h̄),

the driving-ion interaction Hamiltonian is

ĤI/h̄ = f̃ (t )ei(ωeg+δavg )t (eiδsplt σ̂
(1)

+ + e−iδsplt σ̂
(2)

+ )

×(1 + iηei(ωm+δm )t â† + iηe−i(ωm+δm )t â)

+ H.c., (2)

where the Lamb-Dicke condition that η
√

2n + 1 ≪ 1 has

been assumed, and terms oscillating at the same or-

der as ωeg are omitted. The complete driving term f̃ (t )

is f̃ (t ) = ∑

j f j (t ) exp[−i(ω
( j)
s + δ

( j)
s )t] and comprises two

terms: the latter sideband-selection term and a slowly oscil-

lating driving term f j , such that each term in Eq. (2) is of

a comparable frequency to the acoustic trap frequency. The

selection frequency ωs is set to ωeg + nωm to pick out the nth

FIG. 1. The energy levels of the standard Mølmer-Sørensen gate

operation in the presence of frequency errors. Thick black lines

denote the expected energy levels, whereas thin ones show the

modified structure, and the driving is marked in red and blue for

the appropriate sideband. An error δm in the motional frequency ωm

causes phonon levels to shift but maintains resonance of all transition

paths. Any error in qubit frequencies causes the two-photon process

to be off resonant for some starting states; a shift in the average of

the carrier frequencies δavg changes the energy gap of |gg〉 ↔ |ee〉 by

2δavg while leaving |ge〉 ↔ |eg〉, and an energy splitting between the

two qubits 2δspl has the opposite effect.

sideband, where n = 0 is the carrier, n = 1 is the blue side-

band, and n = −1 is the red sideband. The sideband-driving

term f j (t ) has frequency components that are small compared

to the sideband separation frequency ωm, so that only the

targeted sideband is excited. For the Mølmer-Sørensen gate,

the ions are globally illuminated by a blue field with a selec-

tion frequency ω(b)
s = ωeg + ωm using a constant-amplitude,

slightly off-resonant drive fb(t ) = �eiǫt , simultaneously with

a red field at ω(r)
s = ωeg − ωm and fr (t ) = f ∗

b (t ), leading to a

Hamiltonian

ĤMS = −η fb(t )eiδmt â† ·

⎛

⎜

⎜

⎝

cos((δavg + δspl)t )σ̂ (1)
y

+ sin((δavg + δspl)t )σ̂ (1)
x

+ cos((δavg − δspl)t )σ̂ (2)
y

+ sin((δavg − δspl)t )σ̂ (2)
x

⎞

⎟

⎟

⎠

+ H.c.

(3)

In the absence of errors, this degrades to the standard Hamil-

tonian ĤMS = −η[ fb(t )â† + f ∗
b (t )â](σ̂ (1)

y + σ̂ (2)
y ). In Eq. (3),

the two selection error terms δ(r)
s and δ(b)

s have been

reparametrized to average and splitting terms with the same

treatment as the qubit error terms. In this form, the splitting

term appears only as an addition to the motional detuning δm,

while the average similarly modifies the average qubit detun-

ing δavg, allowing these two preexisting terms to completely

represent static mis-sets in the selection frequencies.

Equation 3 is analytically solvable only when no qubit

frequency errors are present, resulting in a time-evolution

operator

ÛMS(t ) = D̂
[(

σ̂ (1)
y + σ̂ (2)

y

)∫ t

0
fb(t1) dt1

]

× exp
[

2iσ̂ (1)
y σ̂ (2)

y Im
∫ t

0
dt1

∫ t1
0

dt2 fb(t1) f ∗
b (t2)

]

,

(4)

where D̂ is the motional phase-space displacement operator

D̂(α) = exp(αâ† − α∗â). As such, the first term defines the

coupling of the qubits individually to the excitation of the mo-

tional mode, and the second term represents a true entangling
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interaction between the two qubits. Together, these two terms

form two conditions that must be satisfied simultaneously at

the gate time: the motional phase-space displacement must

return to zero, and the qubit entanglement phase accumulation

must reach the desired level.

The driving function fb(t ) cannot be designed to eliminate

error terms from the complete Hamiltonian, and with their

effects active, an exact time-evolution operator like Eq. (4)

cannot be found. Series-expansion methods neither truncate

nor converge in a computable number of steps; the noncom-

mutation of the Pauli operators σx and σy along with depen-

dence on increasingly large motional excitations at higher

orders frustrate the Magnus and similar expansions, while

the aperiodicity of the system prevents a reasonable Floquet

approach. Instead, numerical techniques are used here to

access and minimize the gate’s response to errors.

B. Optimization

It is first important to quantify how performant a quantum

gate is so that some form of improvement can be found and

optimized. Any meaningful measure of the success of an

operation must take into account all possible states that the

system may exist in. One such measure is the gate infidelity,

defined by I = 1 − ∑

k |ψk|ÛMS(�δ)|χk|
2
/K , in terms of all

types of detunings �δ and K pairs of start and ideal target

states {|χk〉, |ψk〉}, respectively, where the start states span the

Hilbert space concerned. To ensure that the gate is resilient to

detunings with a wide range of magnitudes, an appropriate fig-

ure of merit is an expectation of the total infidelity E [I (�δ)] =
∫

I (�δ) dw(�δ) for a suitable weight function w; typically this

can be taken as an adequately dimensioned normal distri-

bution as a reasonable proxy for experimental uncertainties.

This modified target causes the optimizer to prefer parameters

which provide good fidelities over a range of errors, with a

hyperparameter �σδ being the standard deviations of the error

distributions, affecting how heavily larger errors are weighted.

Notably, the use of an expectation does not require the optimal

schemes to have perfect infidelity at zero error, but a suitable

choice of weight function may ensure that any remnant error

will be negligible.

The optimizations presented here will consider a shaped

driving field f (t )—the subscript b is dropped for simplicity—

with multiple frequency components (“tones”) simultaneously

to minimize the effects of the error terms on the final gate

operation, taking f (t ) = ∑n
k=1 cn,keikǫt , where the cn,k are

complex variables with dimensions of frequency. The targeted

figure of merit is the expectation of gate infidelity, averaged

over all possible electronic starting states weighted equally

and over all possible detunings weighted as a normally dis-

tributed error model. An understanding of the precise details

of the numerical methodology is not necessary to appreciate

the subsequent results, so further discussion is deferred to

Sec. IV.

III. RESULTS

We perform optimizations using the multitone parametriza-

tion of the driving field to produce gates resilient against all

forms of static errors on the qubit frequencies and an average

FIG. 2. Main figure: gate fidelity for optimized driving schemes

compared to the standard Mølmer-Sørensen scheme. Inset: total drive

amplitude during the gate operation. The detuning error considered

is in the ratio δavg = 2δspl. An error which causes the single-tone gate

to leave the error-correction threshold of 99.9% causes an infidelity

of only 2.5 × 10−5 when four or more tones are used. The two-

and three-tone gates are minor modifications of the standard driving

yet produce a three- to four-times improvement over the range of

meaningful infidelities.

offset in the sideband-selection frequencies. The maximum

peak power usage of the interrogation source is fixed across

all numbers of tones so as to form a fair comparison with the

base gate, while the gate time is allowed to vary to facilitate

this by making the base detuning ǫ a control parameter. Aside

from this detuning of the closest tone to the sideband, the other

optimization variables are the relative strengths and phases of

the tones in the driving field.

In Fig. 2, the best driving schemes obtained are compared

to the performance of the base gate at varying qubit detunings.

Due to the nature of any numerical optimization, and as

the optimization landscape is infinite and nonperiodic, it is

impossible to ascertain if a true global maximum has been

found. However, sampling the initial parameter space increas-

ingly finely can arbitrarily reduce the possibility of having

missed a better result. The results presented here then are most

correctly lower bounds on the maximum achievable fidelities.

The hyperparameter �σδ was chosen to prioritize the minimiza-

tion of infidelity for detunings of such a magnitude that the

base gate is close to, but not quite in, the error-correcting

region. This prioritizes cases where qubit frequency errors

would prevent current gates from being computationally vi-

able and is largely unconcerned with situations where such

errors would not be the dominant terms. At lower detuning

magnitudes, the monotone gate is able to outperform these

numerical schemes, but only in regions where the error is

insignificant.

The driving fields resulting from these optimizations are

specified in Table I, and their time-dependent amplitudes are

shown in the inset of Fig. 2. For two- or three-tone gates,

the optimized drivings are minor perturbations of a standard

gate performed with two loops in phase space, with maximum

relative amplitude variation of 0.132 and 0.033, respectively,

but the largest improvements are seen once four tones are
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TABLE I. Tabulated values of coefficients for the multitone driving of the Mølmer-Sørensen gate optimized to reduce the effects of static

qubit frequency errors. The driving field with n tones takes the form fn(t ) = ∑n

k=1 |cn,k |eiφn,k eikǫnt , where the units are scaled such that ǫ1 = 4

and c1,1 = 1 in the base case, and all driving fields have the same peak power usage. The gate time τn is given in terms of the standard gate,

which has constant power, while the multitone gates have a maximum variation in the power of δfn. The last phase is chosen as zero for all

pulses; driving fields are equivalent up to a global phase.

Tones τn/τ1 δfn ǫn cn,1 cn,2 cn,3 cn,4 cn,5 cn,6

|c| 0.066 0.934
2 3.368 0.132 1.188

φ/π −0.032 0

|c| 0.103 0.979 0.090
3 3.185 0.033 1.256

φ/π −0.005 −0.003 0

|c| 0.051 0.405 0.539 0.359
4 4.836 0.555 0.827

φ/π −0.609 −0.817 0.108 0

|c| 0.048 0.450 0.516 0.414 0.183
5 4.542 0.622 0.881

φ/π −0.899 −0.930 0.045 −0.242 0

|c| 0.055 0.098 0.413 0.733 0.215 0.128
6 6.529 0.482 0.613

φ/π −0.616 −0.785 −0.954 0.007 −0.043 0

included. For errors which cause the base gate to have fi-

delities on the thresholds of the error-correcting regions, 99%

and 99.9%, depending on the particular definition, a four-tone

gate using the same amount of peak power has infidelities of

1.0 × 10−3 and 2.5 × 10−5, respectively—10 and 250 times

smaller. This does, however, come at a cost in gate time; this

gate requires slightly under five times the amount of time to

complete, largely because of the increase of the number of

loops completed in phase space.

The causes of the infidelity in the presence of these errors

are best understood in terms of the qubit-motion intermediary

entanglement and the qubit-qubit phase accumulation condi-

tions represented by Eq. (4) for ideal operation, and additional

ion-asymmetric terms which arise from frequency errors. As

the motional frequency remains well known, the phase-space

trajectories depicted in Fig. 3 close well even as qubit fre-

quency errors are increased, and the residual qubit-motion

entanglement is low. Instead, shifts in qubit frequencies that

FIG. 3. Motional phase-space trajectories of the different multi-

tone gates also plotted in Fig. 2, with the same peak power usage

and different gate times. Structural changes to the trajectories only

occur on even numbers of tones. The relative time through the gate

is represented by the line color, moving from purple (dark) to orange

(light). Valid qubit-phase advancements are (4n + 1)π/4 for integer

n; the single-tone gate has n = 0, while two to five tones have n = 1

and six tones has n = 2.

cause the two-photon process to become off resonant, such

as an average qubit shift when considering the |gg〉 ↔ |ee〉
transition, result in phase decoherence between the starting

and double-spin-flipped state, degrading the fidelity of the

targeted Bell state. For configurations where the gate process

is on resonant but has a path asymmetry, such as a qubit

splitting on the same |gg〉 ↔ |ee〉 transition, the dominant

infidelity source is due to residual population left in states with

only a single spin-flip.

The infidelity of the base gate varies predominantly

quadratically with a change in the magnitude of the qubit

errors. We have found numerically that a minimum of four

tones are required to improve this scaling behavior over any

sizable region of interest; Fig. 2 shows this improvement

in the scaling through steeper gradients for four and higher

numbers of tones. This new scaling is quartic for realistic

errors, although a new constant offset is introduced at lower

magnitudes. The minimum infidelity is then nonzero for the

optimized gates; however, it can be made negligibly small

with the addition of further tones. As this method also allows

the easy selection of the region of interest, this does not pose

any hard limit of fidelity from this multitone driving.

It is notable that only even numbers of tones make sig-

nificant changes to the fidelity response of the gate; Fig. 3

shows that structural changes to the phase-space trajectories

only occur at these points, despite the amplitude modulation

being rather different between members of each even-odd pair.

IV. OPTIMIZATION METHODS

A. Evaluation of figure of merit

A successful optimization over several parameters typi-

cally requires hundreds of evaluations of the figure of merit,

and the number of repetitions needed to adequately sample the

initial parameter possibilities can easily push this to millions.

As the number of free parameters increases, so too does

the average number of evaluations needed for convergence.

This can easily place restrictions on the driving fields that

can be considered or severely limit the exploration of the
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optimization landscape if the calculation complexity is not

carefully attended to.

The inclusion of an integral in the figure of merit poses a

particular speed concern; numerical integration must always

evaluate the integrand several times, and each evaluation re-

quires a complete numerical solution to the Schrödinger equa-

tion. The number of operations required to achieve a certain

precision generally scales exponentially with the dimensional-

ity of the integral, mandating that the integrand should be sam-

pled in minimal locations. In one dimension, integrals over a

weight function can be evaluated to a high degree of accuracy

with few abscissae using Gaussian quadrature. The integrand

is considered in terms of a polynomial set orthogonal under

the real inner product 〈 f , g〉 =
∫

f (x)g(x) dw(x), allowing the

integration of I accurate to degree 2n − 1 to be expressed as a

sum
∑n

i=1 wiI (xi ), where the xi are the roots of the nth-order

polynomial and the weights wi are precalculated [28]. For a

weight function of the form w(x) = exp(−x2), as is the case

for normally distributed errors, the relevant polynomial set

is the Hermite polynomials. This method does not require

recursive subdivision of integration regions to reach a desired

accuracy, unlike simpler Newton-Cotes schemes, reducing

the total number of evaluations, and can also handle infinite

regions without truncation. Similar methods allow the exten-

sion to d dimensions with better performance than the naïve

nd achieved by nesting, although the lack of well-defined

orthogonal polynomials does not permit generic constructions

to arbitrary degree [29].

The evaluation of the figure of merit is also accelerated by

considering the symmetry of the integrand under transforma-

tions of the detunings and spanning basis. After the absorption

of the selection errors into other terms, the three remaining

errors specified in Eq. (3) manifest differently throughout the

action. Shifts in the motional frequency leave all two-photon

processes on resonance but modify the true gate time. The

qubit errors cause certain transitions to become energetically

mismatched; a shift in the average carrier transition causes

the |gg〉 ↔ |ee〉 flopping to have an energy difference of 2δavg

from the sum of the red and blue photons required, but without

lifting the energy degeneracy of the |eg〉 and |ge〉 levels, the

blue-blue and red-red processes which mediate entanglement

between this manifold remain favorable, albeit with a mod-

ified detuning from the virtual levels. If instead the average

is well known but there are different carrier frequencies, the

|eg〉 ↔ |ge〉 transition cannot be on resonance but the blue-red

process to promote |gg〉 to |ee〉 is.

This similarity can be quantified by considering how the

evolution of the system changes when its initial state is mod-

ified by a time-independent unitary operator V̂ , such as σ̂ (1)
y

that maps |gg〉 to −i|ge〉. When a Hamiltonian Ĥ satisfying the

Schrödinger equation i∂t Û = ĤÛ is modified by V̂ to Ĥ′ =
V̂†ĤV̂ , the resultant time-evolution operator is Û ′ = V̂†Û V̂ .

With the qubit error terms in Eq. (3) as explicit arguments,

taking V̂ = σ̂ (1)
y leads to Ĥ′

MS
(δavg, δspl) = ĤMS(−δspl,−δavg),

while V̂ = σ̂ (2)
y makes Ĥ′

MS
(δavg, δspl) = ĤMS(δspl, δavg). We

therefore find that δavg and δspl have equivalent effects on

different starting states and cause equal infidelities when

totaled over the complete basis of gate operation. Any shaped

driving function f (t ) which minimizes a total gate error for an

offset in the average qubit frequency will consequently also

minimize the error due to a splitting between the two. Further,

the oscillations |gg〉 ↔ |ee〉 and |eg〉 ↔ |ge〉 are symmetric

with respect to exchange of starting state if the signs of both

errors simultaneously flip, i.e., the dynamics of the transition

|gg〉 → (|gg〉 − i|ee〉)/
√

2 exhibit the same infidelity behavior

for δavg and δspl as |ee〉 does for −δavg and −δspl. In tandem,

these two symmetries allow complete information of the

average fidelity to be obtained by considering only half the

possible initial states, thus taking half the time.

B. Power-usage constraints

Unlike the standard Mølmer-Sørensen scheme, the n-tone

driving fn(t ) = ∑n
k=1 cn,keikǫnt considered here has variable

power usage ∝| fn|2 throughout the gate. The supremum lo-

cation for an arbitrary number of tones with given control

parameters is calculated by reformulating the natural maxi-

mization problem into one of polynomial root finding, which

can be solved by eigenvalue methods on a companion matrix

[28]. All extrema of the power constraint are located at the

zeros of the derivative ∂t | fn(t )|2, which can be recast via

multiplication by the nonzero term exp[i(n − 1)ǫnt] into the

complex polynomial in z = eiǫnt :

2n−2
∑

k = 0

k �=n−1

(

∑

j

c jc
∗
j−k+n−1

)

(k − n + 1)zk = 0, (5)

where j runs from 1 to k + 1 for k < n − 1 and from k − n +
2 to n for k > n − 1. The roots zℓ are related to the tempo-

ral locations of extrema tℓ,m by ǫntℓ,m = arg(zℓ) − i ln |zℓ| +
2πm, where the integer m denotes the period of the driving,

and the only roots of interest are in the first period and real,

where |zℓ| = 1 and m = 0. The peak power usage follows

simply by testing the 2n − 2 or fewer abscissae to find the

global maximum.

The optimizations presented in the paper are performed

using a standard unconstrained Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [28] over the free ratios |cn,k/cn,1|,
the relative phases φn,k , and the principle detuning ǫn, which

can vary entirely freely. The constraint that the peak power

usage is equal under both schemes is then achieved by

fixing the absolute value of cn,1 such that maxt | fn(t )|2 =
maxt | f1(t )|2, inside the figure-of-merit calculation. The final

free parameter—the coupling strength of the base gate—is

chosen to be c1,1 = ǫ1/4 to coincide with the shortest possible

single-tone gate.

C. Agreement with prior results

In order to gauge the reliability of the numerical method, a

comparison can be made with analytically constructed control

solutions, such as the shaped pulses rendering gates robust

against errors solely in the motional frequency. The optimal

pulse shapes found with this method reproduce those previ-

ously reported [20,21], which are significantly different from

those presented in Table I and illustrated in Figs. 2 and 3. In

particular, the average absolute phase-space displacement is

kept as close as possible to zero to lessen the effects of thermal
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fluctuations and trap-frequency offsets [30], whereas this is

not the case for qubit frequency errors.

These methods have reproduced the analytically known

optimum solutions in situations where they are known to

exist but have also been numerically shown to produce highly

robust gates in qualitatively different situations where a pen-

and-paper construction is not possible, highlighting the versa-

tility of the methodology.

V. CONCLUSIONS

Simply synthesized multitone drivings can massively re-

duce errors due to qubit frequency shifts on one or both

qubits simultaneously in the standard Mølmer-Sørensen gate,

without increasing the amount of peak power required. With

four or more tones, the quadratic scaling of the infidelity with

respect to the qubit error size can be improved to fourth order,

with a constant maximum fidelity ceiling which is raised by

the addition of further tones. This method is not unique to

any method of driving nor qubit encoding and can be applied

universally across all standard trapped-ion processors with

little-to-no additional hardware required. It is most useful,

though, in the field of optical qubit systems where previous

microwave techniques do not readily apply. The techniques

used to quickly numerically optimize pulse sequences with

a minimum number of simulations and to apply the strictly

nonlinear power-usage constraints are general, applicable to

all numerical infidelity optimizations.
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